It might be assumed that, for any formal criterion, a set exists whose members are those objects (and only those objects) that satisfy the criterion; but this assumption is disproved by a set containing exactly the sets that are not members of themselves. If such a set qualifies as a member of itself, it would contradict its own definition as a set containing sets that are not members of themselves. On the other hand, if such a set is not a member of itself, it would qualify as a member of itself by the same definition. This contradiction is Russell's paradox.
Labels: street renaming